Python for control purposes

Prof. Roberto Bucher
Scuola Universitaria Professionale della Svizzera Italiana
Dipartimento Tecnologie Innovative
6928 Manno
roberto.bucher@supsi.ch

July 27, 2018

Contents

Introduction
1.1 Install the packages
1.2 The simplest way
1.3 Linux
1.3.1 Required packages
1.3.2 Install the pycontrol.tgz package
1.4 Windows e
1.5 Mac OSX e
Python - Some hints for Matlab users
2.1 Basics
2.2 The python shell
2.3 Python vs. Matlab
2.4 List, array and matrix L.
2.5 List . . o e
2.6 ATTAYS e
2.7 Matrices e
2.8 Indexing
2.9 Listso
2,10 ATTAYS .« . o o
2.11 Matrices L
2.12 Multidimensional arrays and matrices
The Python Control System toolbox
3.1 Basics e
3.2 Models e
3.3 Continuous systems
3.4 State-space representation
3.5 Transfer function
3.6 Zeros-Poles-Gain
3.7 Discrete time systems
3.8 State-space representation
3.9 Transfer function
3.10 Conversions e
311 Casting o
3.12 Models interconnection

13
13
13
14
14
14
15
15
16
16
17
18
19

4 CONTENTS

4 System analysis 27
4.1 Time response i e e 27
4.2 Frequency analysiso 32
4.3 Poles, zeros and root locus analysis oL 34

5 Modeling 37
5.1 Model of a DCmotor 37

5.1.1 Plant e 37
5.1.2 Modules and constantso 38
5.1.3 Reference frames 38
5.1.4 Body and inertia of theloado 38
5.1.5 Forces and torques 38
5.1.6 Model 39
5.1.7 State-space matrices 39
5.2 Model of the inverted pendulumo 40
5.2.1 Modules and constantso 41
5.2.2 Frames - Car and pendulum L 42
5.2.3 Points, bodies, masses and inertias 42
5.2.4 Forces, frictions and gravityo 42
5.2.5 Final model and linearized state-space matrices 43
5.3 Model of the Ball-on-Wheel plant 44
5.3.1 Modules and constants 45
5.3.2 Reference frames 45
5.3.3 Centers of massof theball 45
5.3.4 Masses and inertias 46
5.3.5 Forces and torques 46
5.3.6 Kane’s model and linearized state-space matrices 46

6 Control design 49

6.1 PlI+4Lead design example 49
6.1.1 Define the system and the project specifications 49
6.1.2 Plpart. 50
6.1.3 Lead part 52
6.1.4 Controller Gain 53
6.1.5 Simulation of the controlled system o4

6.2 Discrete-state feedback controller design 55
6.2.1 Plant and project specifications 55
6.2.2 Motor parameters identification L 95
6.2.3 Required modules 56
6.2.4 Function for least square identification 56
6.2.5 Parameter identification o oL 56
6.2.6 Check of the identified parameters. 57
6.2.7 Continuous and discrete model 57
6.2.8 Controller designo 58
6.2.9 Observer designo 59

6.2.10 Controller in compact form 60

CONTENTS

6.2.11 Anti windup
6.2.12 Simulation of the controlled plant
7 Hybrid simulation and code generation
7.1 Basics
7.2 pyEdit ...
7.2.1 Theeditor
7.2.2 The first exampleo
7.2.3 Personalize the most used blocks
7.2.4 Defining new blockso oo
7.2.5 Someremarks
7.3 The editor window
7.3.1 The toolbar
7.3.2 Operations with the right mouse button
7.3.3 Operations with the right mouse button on a block
7.3.4 Operations with the right mouse button on a connection
7.3.5 Operations with the right mouse button on anode
7.3.6 Behaviour of the right mouse button by drawing a connection
7.4 Basic editor operations Lo
7.4.1 Inserting a block oo
7.4.2 Connecting blockso
7.4.3 Insertinganode.
7.4.4 Deleting a block oranode L.
7.5 Removeanode
8 Simulation and Code generation
8.1 Interface functions
8.2 The implementation functions
8.3 Translating the block into the RCPblk class
8.4 Special dialog box for the block parameters
8.5 Example
8.6 The parameters for the code generation
8.7 Translating the diagram into elements of the RCPdlg class
8.8 Translating the block list into C-code
8.8.1 Finding the right execution sequence
8.8.2 Generating the C-code
8.8.3 The init function L
8.8.4 The termination function oL
8.8.5 The ISR function
8.9 Themainfile
9 Example
9.1 Theplant e
9.2 The plant model
9.3 Controller design
9.4 Observer design

60
60

63
63
63
63
63
66
67
68
68
68
68
68
69
70
70
70
70
70
70
70
71

73
73
75
75
I6)
76
77
7
78
78
79
30
81
81
81

CONTENTS

9.5 Simulation, 86
9.6 Real-time controller 87

List of Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
9.3

6.1
6.2
6.3
6.4

6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3
8.4

Step response for continuous-time systemso 27
Step response for discrete-time systemso 28
Continuous time systems - Initial condition response. 29
Continuous time systems - Impulse response 30
Continuous time systems - Generic input L. 31
Bode ploto 32
Nyquist plot 33
Nichols plot 33
Poles and zeros 35
Root locus plot 35
Inverted pendulum 40
Inverted pendulum - Real plant 41
Ball-On-Wheel plant 44
Bode diagram of the plant L 50
Bode diagram: G (dashed) and Gpi*G 51
Bode diagram - G (dashed), Gpi*G (dotted) and Gpi*GLead*G 53
Bode diagram - G (dashed), Gpi*G (dotted), Gpi*GLead*G (dot-dashed) and

K*Gpi*GLead™®*G 54
Step response of the controlled plant 55
Step response and collected data L. 58
Block diagram of the controlled system 61
Some pyEdit blocks for control designo L 64
The first example 64
The pyEdit environment Lo 65
Result from the drag and drop operations 65
Result after parametrization L 66
Result (plot) of the simulation L. 67
The pyEdit applicationo 69
Window with the block libraries 0. 74
Dialog box for the Pulse generator block 76
Dialog for code generation 7
Simple block diagram 78

9.1
9.2
9.3
9.4
9.5
9.6

LIST OF FIGURES

The disks and spring plant oL 83
Antiwindup 85
Block diagram for the simulation 0. 87
Simulation of the plant oo 88
Block diagram for the RT implementation 88

RT execution 89

Chapter 1

Introduction

1.1 Install the packages

1.2 The simplest way

[prepared a VirtualBox disk image [1] with a Debian distribution and all the required packages.
VirtualBox is available for Windows, Linux, OS X and Solaris. All the features described in
this document are available.

Please contact me via email to receive the link to the zipped file.

1.3 Linux

1.3.1 Required packages

The required modules can be simply installed using the usual package manager of the Linux
distribution. It is also possible to install the Anaconda distribution [2] for Linux to get the
basic Python modules.

It is important to check the versions of the Python modules, in particular numpy, scipy and
sympy. Old versions of these packages don’t allows to perform all the tasks described in this
document. In case of old versions, it is possible to download the last versions of these packages
from the SciPy download page [3], and install them from a Linux shell.

Under Debian jessie we can use the apt manager to install the following packages:

e python-numpy (Vers. > 1.8.2)
e python-scipy (Vers. > 0.14)
e python-matplotlib

python-sympy (Vers. > 0.7.5)

python-setuptools

python-psutils

jupyter

10 CHAPTER 1. INTRODUCTION

e jupyter-qtconsole

Under Debian and Ubuntu it is possible to check if all the required development packages are
correctly installed using the shell command

sudo apt-get build-dep python-scipy

The following packages are not available as distribution packages and should be installed sep-
arately.

e The Python Control toolbox [4]
e The Slycot libraries [5]

e The pycontrol.tgz package [6]
For the second part of the project (code generation etc.) the following packages are required

e python-pyqt4
e python-pyqt4-dev
e python-qwtb-qt4
This features presented in the second part of this document are at present only interesting under

the Linux OS, because the real-time code is generated for a Linux PREEMPT-RT machine.

1.3.2 Install the pycontrol.tgz package

After downloading the pycontrol.tgz package, unpack it for example under “/usr/local” and
you obtain a new folder “pycontrol”.
The installation is quite simple. Launch as superuser the command

make

or

make reduced

if you don’t want to have COMEDI installed.

The installation download the control-master package, the slycot-master package and install
the full software.

As last step it is important to update the “.bashrc” file as normal user with the command

make user

The system has been tested under “Debian stable”, “Debian testing” with python-2.7, python-
3.5 and python-3.6.

1.4. WINDOWS 11

1.4 Windows

Under Windows it is sufficient to install the “Anaconda” package [2], to have all the python and
jupyter modules installed. The Slycot libraries for Windows can be downloaded from here [7].
At present it is not possible to perform hybrid simulation and code generation under the
Windows OS.

1.5 Mac OSX

The Anaconda package [2] is available for Mac OSX. The Slycot libraries can be downloaded
from here [7].

12

CHAPTER 1. INTRODUCTION

Chapter 2

Python - Some hints for Matlab users

2.1 Basics

There are important differences between Matlab and Python. In particular, the Python ap-
proach to matrices and to indexed objects is quite different compared to Matlab.

More information about a comparison between Python and Matlab is available online at [8].
The web contains a lot of documentation about Python and its packages. In particular, the
book of David Pine [9] gives a good introduction about the features of Python for scientific
applications.

Other links present tutorials for numpy [10], scipy [11], matplotlib [12] and sympy [13].

2.2 The python shell

A Python script can run within a Python shell, but can also be launched as executable.

The basic python shell is similar to the Matlab shell without the java improvements (matlab
-nojvm).

A better shell is for example jupyter. In this interactive form, when started as jupyter-
qtconsole, jupyter already loads at startup a set of functions and modules.

Another interesting environment, more similar to the Matlab shell, is represented by the Spyder
application. In this application it is possible to debug scripts and functions like in the Matlab
environment.

In this document we are mostly working with jupyter launched with the shell commands

jupyter-qtconsole

Sometimes not all the functions and modules are explicitly loaded at the beginning of the
examples. In addition, jupyter implements some useful commands like for example whos and
run (for launching scripts).

In the jupyter shell it is possible to start single commands, paste a set of commands or launch

¢

a “.py”’ program using run.

13

14

CHAPTER 2. PYTHON - SOME HINTS FOR MATLAB USERS

In [1]: # single command
In [2]: a =5
In [3]: # paste a set of commands
In [4]: a=5
...t b=T7

: c=ax*b

: print c
35
In [5]: # run a .py file
In [6]: run DCmotorKane.py
Matrix ([[—Dmsw(t) + kt*xI(t)]])
Matrix ([[—J*Derivative (w(t), t)]])
[0 1]
[0 —Dm/J]]
[[0]
[kt/3]]

2.3 Python vs. Matlab

Differently from Matlab, Python implements more types of variables

In [1]: a=5h

In [2]: b=2.7

In [3]: ¢=[[1,2,3],[4,5,6]]
In [4]: d=’Ciao’

In [5]: whos

Variable Type Data/Info
a int 5

b float 2.7

c list n=2

d str Ciao

2.4 List, array and matrix

Python implements three kind of multidimensional objects: list, array and matrix. These
objects are handled differently than in Matlab.

2.5 List

A Python list implements the Matlab cell. It represents the simplest and default indexed

object.

2.6. ARRAYS 15

In [1]: a=[[[1,2],[3,4]], abcd’,2]

In [2]: b=[[1,2,3],(4,5,6],[7,8,9]]

In [3]: whos

Variable Type Data/Info
a list n=3

b list n=3

2.6 Arrays

In Python the array is a multidimensional variable that implements sets of values of the same
type. Usually the elements of an array are numbers, but can also be booleans, strings, or other
objects. An array is the basic instance for most scientific applications.

Operations like *, /, ** etc. implement the dot operations of the Matlab environment (.*,
./ and .”). For example, the multiplication of two arrays a * a represents the value-by-value
multiplication implemented in Matlab with the operation a. * a.

In [1]: from numpy import mat, matrix, array
In [2]: a=array ([[1,2,3],[4,5,6]])

In [3]: b=array ([[1],[2]])

In [4]: print axa
[1 4 9]
(16 25 36]]

5]: print axb
2 3]
10 12]]

2.7 Matrices

The matrix object is useful in case of linear algebra operations. In this case the variables are
instanced using the mat or the matrix function.

16 CHAPTER 2. PYTHON - SOME HINTS FOR MATLAB USERS

In [1]: from numpy import mat, matrix, array
In [2]: a=mat(a)
In [3]: b=array ([[1],[2],[3]])

In [4]: axb

Out [5]:
matrix ([[14],
[32]])
In [6]: a=array(a)
In [7]: axb
ValueError Traceback (most recent
call last)
<ipython—input—9—-8201c¢27d19b7> in <module>()
> 1 axb

ValueError: operands could not be broadcast together with
shapes (2,3) (3,1)

In [8]: b=mat(b)

In [9]: axb

Out[10]:

matrix ([[14],
[32]])

2.8 Indexing

Indexing in Python is quite different compared with the syntax used in Matlab. Indices start
from 0 (and not 1 as in Matlab). In addition, the syntax is different for lists, arrays and
matrices.

2.9 Lists

1-dimension lists can be accessed using one index (ex. a[2]). Multidimensional lists require
multiple indices in the form [4][j]. ..

2.10. ARRAYS

In [1]: a=[1,2,3,4,5]

In [2]: %whos
Variable Type Data/Info

a list n=>5
In [3]: a[3]
Out [3]: 4

In [4]: b=][[1,2,3],[4,5,6]]

In [5]: %whos
Variable Type Data/Info

a list n=>5
b list n=2

In [6]: b[1][2]
Out [6]: 6

In [7]: b[O]
Out[7]: [1, 2, 3]

2.10 Arrays

Multidimensional arrays allow the use of indices in the forms [i, j] and [é][j].

In [1]: from numpy import array
In [2]: a=array([1,2,3,4,5])

In [3]: b=array ([[1,2,3],[4,5,6]])

In [4]: %whos
Variable Type Data/Info
a ndarray 5: 5 elems, type ‘int64 ¢, 40 bytes

b ndarray 2x3: 6 elems, type ‘int64 ‘, 48 bytes

18

CHAPTER 2. PYTHON - SOME HINTS FOR MATLAB USERS

In [5]: a.shape

Out [5]: (5,)

In [6]: b.shape

Out[6]: (2, 3)

In [7]: a[3]

Out [7]: 4

In [8]: b[0,2]

Out [8]: 3

In [9]: b[O][2]

Out[9]: 3

In [10]: b[:,0]

Out[10]: array ([1, 4])
In [11]: b[O0,:]

Out[11]: array([1, 2, 3])
In [12]: b[O]

Out[12]: array([1, 2, 3])

2.11 Matrices

Matrices can be only indexed using the [i, j] syntax. A matrix has always a minimum of 2
dimensions.

In [1]: from numpy import mat

In [2]: a=array([1,2,3,4,5])

In [3]: b=array ([[1,2,3],[4,5,6]])
In [4]: %whos

Variable Type Data/Info

a matrix [[1 2 3 4 5]]
b matrix [[1T 2 3]\n [4 5 6]]
In [5]: a.shape

Out[5]: (1, 5)

In [6]: b.shape

Out[6]: (2, 3)

2.12. MULTIDIMENSIONAL ARRAYS AND MATRICES

2.12

In [7]: a[0,2]
Out [7]: 3

In [8]: b[l,1]

Out [8]: 5

In [9]: b[:,0]
Out [9]:
matrix ([[1],

[4]1)

In [10]: b[O0,:]
Out [10]: matrix ([[1, 2, 3]])

Matrices and arrays can be defined with more than 2 dimensions.

Multidimensional arrays and matrices

In [1]: from numpy import array, mat
In [2]: a=zeros((3,3,3),int8)

In [3]: a.shape
Out [3]: (3, 3, 3)

In [4]: %whos
Variable Type Data/Info

a ndarray 3x3x3: 27 elems, type
bytes

In [5]: a[l,1,1]
Out [5]: 0
In [6]: a[l,1,1]=5

In [7]: a

Out [7]:

array ([[[0, 0, O],

0, 0],

[07 07 0]]7
[0, 0, o],
[0, 5, 0],
[0, o, o]],
([0, 0, 0],
[0, 0, 0]

[0, 0, 0]]], dtype=int8)

‘int8 ¢,

27

19

20

CHAPTER 2. PYTHON - SOME HINTS FOR MATLAB USERS

Chapter 3

The Python Control System toolbox

3.1 Basics

The Python Control Systems Library, is a package initially developed by Richard Murray at
Caltech. This toolbox contains a set of python classes and functions that implement common
operations for the analysis and design of feedback control systems. In addition, a MATLAB
compatibility package (control.matlab) has been integrated in order to provide functions equiv-
alent to the commands available in the MATLAB Control Systems Toolbox.

3.2 Models

LTT systems can be described in state-space form or as transfer functions.

21

22 CHAPTER 3. THE PYTHON CONTROL SYSTEM TOOLBOX

3.3 Continuous systems

3.4 State-space representation

In [1]: from control import *
In [2]: a=[[0,1],[~1,~1]]

In [3]: b=[[0][1]]

In [4]: c=[1,0]

In [5]: d=0

In [6]: sys = ss(a,b,c,d)

In [7]: print sys

A=T[{0 1]
-1 —1]]
B = [[0]
[11]

c= [o]
D = [[0]]

3.5 Transfer function

In [1]: from control import =
In (2] g=tf(1,[1,1,1])
In [3]: print g

1

s"2 4+ s + 1

3.6 Zeros-Poles-Gain

This method is not implemented in control toolbox yet. It is available in the package scipy.signal
but it is not completely compatible with the class of LTI objects defined in the Python control
toolbox.

3.7 Discrete time systems

An additional fields (dt) in the StateSpace and TransferFunction classes is used to differ-
entiate continuous-time and discrete-time systems.

3.8. STATE-SPACE REPRESENTATION 23

3.8 State-space representation

In [4]: a=[[0,1],[~1,1]]
In [5]: b=[[0][1]]

In [6]: c=[1,—1]

In [7]: d=0

In [8]: sysd = ss(a,b,c,d,0.01)

In [9]: print sysd

A= ([0 1

-1 1]

B = [[0]

[1]]
=1 -1]
D= [[0]]
dt = 0.01

3.9 Transfer function

In [1]: from control import x
In [2]: g=tf([1,—1],[1,—1,1],0.01)
In [3]: print g
z — 1
z°2 —z + 1

dt = 0.01

3.10 Conversions

The Python control system toolbox only implements conversion from continuous time systems
to discrete-time systems (c2d) with the methods “zoh”, “tustin” and “matched”. No conver-
sion from discrete to continuous has been implemented yet.

The supsictrl.ctr_repl package implements both functions ¢2d and d2c¢ with the methods “zoh’,
"foh“, "tustin“ and "matched“ ("matched* is only implemented in c2d).

24 CHAPTER 3. THE PYTHON CONTROL SYSTEM TOOLBOX

In [1]: from control import x

In [2]: from control.Matlab import x
In [3]: g=tf(1,[1,1,1])

In [4] # Matlab compatibility

In [5]: gd = ¢c2d(g,0.01)

In [6] # control toolbozx

In [7]: gd2 = sample_system(g,0.01)

In [8]: print g

s"2 + s +1

In [9]: print gd

4.983e—05 z + 4.967e—05

z"2 — 1.99 z + 0.99

dt = 0.01

In [1]: from control import =x

In [2]: from control.Matlab import c2d

In [3]: from supsictrl.ctrl_repl import d2c
In [4]: g=tf(1,[1,1,1])

In [5]: gd =c2d(g,0.01)

In [6]: g2=d2c(gd)

In [7]: print g

s"2 4+ s + 1

In [8]: print g2

1.729e—14 s + 1

s"2 4+ s + 1

3.11 Casting

The control.matlab module implements the casting functions to transform LTI systems to a
transfer function (tf) or to a state-space form (ss).

3.12. MODELS INTERCONNECTION 25

In [8]: g = tf(sys)
In [9]: print g
1

s"2 4+ s + 1

and transfer functions into one of the state-space representation

In [10]: sys = ss(g)

In [11]: print sys

A= [0. —1]
[1. —1.]]
B=[[-1.]

[0.]]

c=1[[0. —-1.]]
D= 1[[0.]]

3.12 Models interconnection

Commands like parallel and series are available in order to interconnect systems. The op-
erators + and * have been overloaded for the LTI class to perform the same operations. In
addition the command feedback is implemented exactly as in Matlab.

In [1]: from control import x

In [2]: gl=tf(1,[1,1])

In [3]: g2=tf(1,[1,2])

In [4]: print parallel(gl,g2)
2 s + 3

s"2 + 3 s + 2

In [5]: print gl4g2

2 s+ 3

s"2 + 3 s + 2

26

CHAPTER 3. THE PYTHON CONTROL SYSTEM TOOLBOX

In [6]: print series(gl,g2)

1

s"2 4+ 3 s + 2

In [7]: print glxg2

1

s"2 + 3 s + 2

In [8]: print feedback(gl,g2)

s + 2

s"2 4+ 3 s + 3

Chapter 4

System analysis

4.1 Time response

The Python Control toolbox offers own functions to simulate the time response of systems. For
Matlab users, the control.matlab module gives the possibility to work with the same syntax as
in Matlab. Please take care about the order of the return values!

Examples of time responses are shown in the figures 4.1, 4.2, 4.3, 4.4 and 4.5.

In

In

In

In

In

[1]:
[2]:
[3]:
[4]:

[5]:

¢ plt.grid ()

from control import x

import matplotlib.pyplot as plt
g = tf(1,[1,1,1])

t,y = step_-response(g)

plt.plot (t,y)

.: plt.xlabel(’t")
¢ plt.ylabel(y’)

or alternatively

In

In

In

In

In

In

[1]:
[2]:
[3]:
[4]:
[5]:
[6]:

from control import x

from control.matlab import x*
import matplotlib.pyplot as plt
g = tf(1,[1,1,1])

y,t = step(g)

plt.plot (t,y)
: plt.xlabel(7t)
.. plt.ylabel(’y’)
: plt.grid ()

1.2

1.0

0.8

> 0.6

0.4

0.2

0.0

Figure 4.1: Step response for continuous-time systems

27

28
In [1]: from control import =x
In [2]: from control.matlab import c2d
In [3]: import matplotlib.pyplot as plt
In [4]: g = t£(1,[1,1,1])
In [5]: gz=c2d(g,0.1)
In [6]: t=arange(0,16,0.1)
In [7]: tl,y = step_-response(gz,t)
In [8]: plt.step(t,y.T[0]) # transpose
col matriz y[0]
: plt.grid ()
plt.xlabel (7t)
plt.ylabel(’y’)
or alternatively
In [1]: from control import x
In [2]: from control.matlab import =
In [3]: import matplotlib.pyplot as plt
In [4]: g = tf(1,[1,1,1])
In [5]: gz=c2d(g,0.1)
In [6]: t=arange(0,16,0.1)
In [7]: y,tl = step(gz,t)
In [8]: plt.step(t,y[0]) # get first
from y matrix

Tow

plt.grid ()
plt.xlabel(’t’)
plt.ylabel(’y’)

Figure 4.2: Step response for discrete-time systems

CHAPTER 4. SYSTEM ANALYSIS

1.2

1.0

0.8

> 0.6

0.4

0.2

0.0

16

4.1. TIME RESPONSE
In [1]: from control import =
In [2]: import matplotlib.pyplot as plt
In [3]: aﬁ:[[o 71]7[_'17 _'1}
In [4]: b=[[0],[1]]
In [5]: c¢=[1,0]
In [6]: d=]0]
In [7]: sys=ss(a,b,c,d)
In [8]: t,y=initial_response (sys,
X0=[1,1])
In [9]: plt.plot(t,y)
...t plt.grid ()
plt.xlabel(7t")
plt.ylabel(’y’)
or alternatively
In [1]: from control import =x
In [2]: from control.matlab import
In [3]: import matplotlib.pyplot as plt
In [4] a:[[Ovl]v[_lv_]-H
In [5]: b=[[0],[1]]
In [6]: c¢=[1,0]
In [7]: d=]0]
In [8]: sys=ss(a,b,c,d)
In [9]: y,t=initial(sys,X0=[1,1])
In [10]: plt.plot(t,y)
... plt.xlabel(’t’)
plt.ylabel(’y’)
plt.grid ()

Figure 4.3: Continuous time systems - Initial condition response

1.4

-0.4

29

10 12 14

30

In [1]: from control import =

In [2]: import matplotlib.pyplot as plt
In [3]: g = tf(1,[1,1,1])

In [4]: t,y = impulse_response(g)

In plt.plot (t,y)

[5].:

plt.grid ()
plt.xlabel(’t’)
plt.ylabel(’y’)

or alternatively

In

In

In

In

In

In

[1]:
[2]:
[3]:
[4]:
[5]:
[6]:

from control import x

from control.matlab import x*
import matplotlib.pyplot as plt
g = tf(1,[1,1,1])

y,t = impulse(g)

plt.plot (t,y)

plt.grid ()

plt.xlabel(7t’)
plt.ylabel(’y’)

Figure 4.4: Continuous time systems - Impulse response

CHAPTER 4. SYSTEM ANALYSIS

0.6

16

4.1.

TIME RESPONSE

31

1.0
In [1]: from control import =x
In [2]: import matplotlib.pyplot as plt
In [3]: g=tf([1,2],[1,2,3,4])
In [4]: t=linspace (0,6%pi)
In [5]: u=sin(t)
In [6]: t,y,x = forced_response(g,t,u)
In [7]: plt.plot(t,y)
...: plt.xlabel(’t’)

plt.ylabel(’y’)

plt.grid ()
or alternatively
In [1]: from control import =
In [2]: from control.matlab import x
In [3]: import matplotlib.pyplot as plt
In [4]: g=tf([1,2],[1,2,3,4])
In [5]: t=linspace (0,6%pi)
In [6]: u=sin(t)
In [7]: y,t,x = lsim(g,u,t)
In [8]: plt.plot(t,y)

...: plt.xlabel(’t’)
plt.ylabel(’y’)
plt.grid ()

Figure 4.5: Continuous time systems - Generic input

20

32

4.2

Frequency analysis

CHAPTER 4. SYSTEM ANALYSIS

The frequency analysis includes some commands like bode_response, nyquist_response,
nichols_response and the corresponding Matlab versions bode, nyquist and nichols. (See

figures 4.6, 4.7 and 4.8)

In [1]: from control import x
In [2]: g=tf([1],[1,0.5,1])
In [3]: bode_plot(g, dB=True);

or alternatively

In [1]: from control import x

In [2]: from control.matlab import =
In [3]: g=tf([1],[1,0.5,1])

In [4]: bode(g, dB=True);

-180 : LSS I . : —
: 10° 10
Frequency (rad/sec)

Figure 4.6: Bode plot

The command margins returns the gain margin, the phase margin and the corresponding

crossover frequencies.

In [1]: from control import x

In [2]: g=tf(2,[1,2,3,1])

In [3]: gm, pm, wg, wp = margin(g)

In [4]: gm # Gain,
Out [4]: 2.5000000000000013

In [5]: pm

Out[5]: 76.274075256921392 # deg
In [6]: wg

Out [6]: 0.85864877610167201 # rad/s
In [7]: wp

Out [7]: 1.7320508075688776 # rad/s

not dB!

In addition, the command stability_margins returns the stability margin and the correspond-
ing frequency. The stability margin values w, and s,,, which correspond to the shortest distance
from the Nyquist curve to the critical point —1, are useful for the sensitivity analysis.

4.2. FREQUENCY ANALYSIS 33
0.8
In [1]: from control import = :
0.6 e T DT - 4
In [2]: import matplotlib.pyplot as plt 04 : : \\\
| N\
In [3]: g=tf([1],[1,2,1]) 020y
In [3]: nyquist_plot(g), plt.grid() 0.0
202l
or alternatively : ‘ :
—0.6l ‘ 0 L
oe ; ; ;
In [1]: from control import = -10 -05 0.0 05 10
In [2]: import matplotlib.pyplot as plt
In [3]: from control.matlab import x
In [4]: g=tf(1,[1,2,1])
In [5]: nyquist(g), plt.grid()
Figure 4.7: Nyquist plot
50 Nichols Plot
In [1]: from control import = R N
In [2]: g=tf(1,[1,2,3,4,0])
In [3]: nichols_plot(g) a
©
° -
‘i :-ﬁﬂﬂdB
. 2 il gy
or alternatively s i
~100 L1 H100.0 4
L1260 dH
In [1]: from control import = = :vél“Q-QdE
71507\ L . 1600 d I . L Lr60'0 o
In [2]: g=tf(1,[1,2,3,4,0]) -700 -600 -500 ~-400 -300 -200 -100 0
’ Ty Phase (deg)
In [3]: nichols(g)

Figure 4.8: Nichols plot

34

CHAPTER 4.

SYSTEM ANALYSIS

In [1]:
In [2]:
In [3]:
In [4]:
Out [4]:
In [5]:
Out [5]:
In [6]:
Out [6]:
In [7]:
Out[7]:
In [8]:
Out [8]:
In [9]:
Out [9]:

from control import
g:tf(27[1727371:|)
gmi pm’

Sm7 Wg7 Wp’

gm
2.5000000000000013

pm
76.274075256921392

wg
1.7320508075688776

wp
0.85864877610167201

sm
0.54497577553096421

WS

1.3669371206538097

*

ws = stability _margins(g)

#

#

#

#

Gain not dB°

deg

rad/s

rad/s

rad/s

4.3 Poles, zeros and root locus analysis

Poles and zeros of an open loop system can be calculated with the commands pole, zero or
plotted and calculated with pzmap.
In addition there are two functions that implement the root locus command: rlocus and
root_locus. At present no algorithm to automatically choose the values of K has been imple-
mented: if not provided, the K vector is calculated in rlocus with log values between 1072 and
103. For the root_locus function the K values should be provided.
If in the jupyter shell you set the command %matplotlib qt, the root locus is plotted on an
external window and it is possible to get the values of gain and damp by clicking with the

mouse on the curves.

Clicked at —0.5724 +1.293j gain 1.722 damp
0.4048
Clicked at —1.119 +0.01874j gain 2.252 damp
0.9999
Clicked at —0.7545 +1.293j) gain 1.114 damp
0.504

4.3. POLES, ZEROS AND ROOT LOCUS ANALYSIS

In [1]: from control import x
In [2]: from control.pzmap import pzmap

In [3]: g=tf([1,1],[1,2,3,4,0])

In [4]: g.pole() 2.0 i FfoIeZeroMaP
Out [4]:
array ([—1.6506291940.] , 15} ; : x i

—0.17468540+1.54686889] ,
—0.17468540 —1.54686889] ,
0.00000000+0. B os

1.0F : : 1

In [5]: g.zero() E 00
Out [5]: array([—1.])

In [6]: poles, zeros = pzmap(g), grid()

In [7]: poles _1sl «]
Out [7]: 295 15 1o 05 0.0 0.5
array ([—1.6506291940. j , Re

—0.17468540+1.54686889] ,
—0.17468540 —1.54686889] ,
0.00000000+0. j D

In [8]: zeros
Out [8]: array([—1.])

Figure 4.9: Poles and zeros

10
In [1]: from control import x
In [2]: g=tf(1,[1,2,3,0]) sl
In [3]: rlocus(g); grid() .
g
S of
. E
or alternatively
_sb
In [1]: from control import =
-10 L L L L L L L L
In [2]: g=tf(1,[1,2,3,0]) -1z -10 -8 -6 -4 -2 0 2 4

In [3]: k=logspace(—3,3,100)

In [4]: root_-locus(g,k); grid()

Figure 4.10: Root locus plot

36

CHAPTER 4. SYSTEM ANALYSIS

Chapter 5

Modeling

The sympy module (symbolic python) contains a full set of operations to manage physical
systems. In particular, it is possible to find the linearized model of a mechanical system using
the Lagrange’s method or the Kane’s method. More details about the Kane’s method are
available at [14], [15], [16], [17], [18] and [19].

In the next sections we present the modelling of 3 plants that we can find in our laboratories
and that are quite familiar to us.

5.1 Model of a DC motor

5.1.1 Plant

In this first example we model a DC servo motor with a current input in order to find its
state-space representation. The motor is characterized by a torque constant k;, an inertia
(motor+load) J and a friction constant D,,.

The input of the plant is the current / and the output is the position ¢. The rotation center is
the point O, the main coordinates system is N and we add a local reference frame Nr which

rotates with the load (angle ¢ and speed w).

37

38

5.1.2 Modules and constants

CHAPTER 5. MODELING

n [1]: from sympy import symbols, Matrix, pi
: from sympy.physics.mechanics import x*
import numpy as np
. # Modeling the system with Kane method
: # Signals
ph = dynamicsymbols(’ph’) # motor angle
: w = dynamicsymbols(’w’) # motor rot. speed
I = dynamicsymbols(’1") # input current
... # Constants
..: Dm = symbols(’Dm’) # friction
: M, J = symbols(’M_J") # Mass and imertia
t = symbols(’t’) # time
kt = symbols(’kt’) # torque constant
5.1.3 Reference frames
In [2]: # Reference frame for the motor and Load
...: N = ReferenceFrame(’N’)
..: O = Point(’0”) # center of rotation
: O.set_vel (N,0)
: # Reference frames for the rotating disk
: Nr = N.orientnew (’Nr’, ’Axis’,[ph, N.x]) #
rotating reference (load)
Nr.set_ang_vel (N, wxN.x)

5.1.4 Body and inertia of the load

In [3]: # Mechanics
Io = Jxouter (Nr.x, Nr.x)

InT = (Io, O)

..: B = RigidBody(’B’, O, Nr, M, InT)

5.1.5 Forces and torques

In order to find the dynamic model of the plant we need some other definitions, in particular
the relation between angle ¢ and angular velocity w, the forces and torques applied to the

system and a vector that contains the rigid bodies of the system.

5.1. MODEL OF A DC MOTOR 39

In [4]: # Forces and torques
...: forces = [(Nr,(kt*I-Dmsw)*N.x)]
kindiffs = [(ph.diff(t)—w)]
bodies=[B]

5.1.6 Model

Using the Kane’s method is now possible to find the dynamic matrices related to the plant.

In [5]: # Model
: KM = KanesMethod (N, q-ind=[ph], u-ind=[w] , kd_eqs=
kindiffs)
fr, frstar = KM. kanes_equations (forces , bodies)

print fr

print frstar
Matrix ([[~Dmsw(t) + kt«I(t)]])
Matrix ([[—J*Derivative (w(t), t)]])

5.1.7 State-space matrices

From the results of the Kane’s model identification, we can now extract the matrices A and B
of the state-space representation.

In [6]: # symbolically linearize about arbitrary
equilibrium
linear_state_matrix , linear_input_matrix , inputs =
KM. linearize (new_method=True)

sel the the equilibrium point
eq-pt = [0, O]
eq-dict = dict(zip ([ph,w], eq-pt))

f_A_lin = linear_state_matrix.subs(eq-dict)
f_B_lin = linear_input_matrix.subs(eq_-dict)
m-_mat = KM. mass_matrix_full.subs(eq_-dict)

compute A and B matrices
A = np.matrix (m-mat.inv () % f_A_lin)
B = np.matrix(mmat.inv () * f_B_lin)

40 CHAPTER 5. MODELING

In [6]: print A
: print B

([0 1]

[0 —Dm/J]]

[[0]

[kt/J]]

5.2 Model of the inverted pendulum

The second example is represented by the classical inverted pendulum as shown in figure 5.1.

th, w

x1

Vi

4
F C

xv () O

Figure 5.1: Inverted pendulum

The global reference frame is Nf (z, y) The point P is the center of mass of the pendulum. The
car is moving with speed v and position C. The pole is rotating with the angle th and angular
velocity w, In addition to the main coordinate frame Nf (x, y), we define a local body-fixed
frame to the pendulum Npend (z1, y1).

5.2. MODEL OF THE INVERTED PENDULUM

Figure 5.2: Inverted pndulum - Real plant

5.2.1 Modules and constants

In [1]: from sympy import symbols, Matrix, pi
...: from sympy.physics.mechanics import x*
import numpy as np

Modeling the system with Kane method

Signals
x, th = dynamicsymbols(’x-th’)
v, w = dynamicsymbols(’v.w’)

F = dynamicsymbols('F’)

Constants

d = symbols(’d’) # friction
.t m, r = symbols(’'m.r’)
: M = symbols (M)

g, t = symbols(’got’)

J = symbols(’J’)

41

42

CHAPTER 5. MODELING

5.2.2 Frames - Car and pendulum

In

[2}.:

Frames and Coord. system

: # Car — reference z,y

Nf = ReferenceFrame(’Nf’)

...: C = Point (’C”)
..: C.set_vel (Nf, vxNf.x)

Car = Particle(’Car’,C,M)

. # Pendulum — reference zl1, yl

Npend = Nf.orientnew (’Npend’, Axis’ ,[th,Nf.z])
Npend.set_ang_vel (Nf,wxNf.z)

..: P =C.locatenew (’P’ ,r«Npend.x)
: P.v2pt_-theory (C,Nf,Npend)

Pa = Particle(’Pa’, P, m)

5.2.3 Points, bodies, masses and inertias

In

[3]:

I = outer (Nf.z, Nf.z)
Inertia_tuple = (J*xI, P)

: Bp = RigidBody(’'Bp’, P, Npend, m, Inertia_tuple)

5.2.4 Forces, frictions and gravity

In

[4}.:

Forces and torques

forces = [(C,F«Nf.x—d*v*Nf.x) ,(P,—m«xg«Nf.y)]
frames = [Nf,Npend]
points = [C,P]

kindiffs = [x.diff(t)—v, th.diff(t) — w]
particles = [Car,Bp]

5.2. MODEL OF THE INVERTED PENDULUM

5.2.5 Final model and linearized state-space matrices

n [5]: # Model
...: KM = KanesMethod (Nf, g-ind=[x,th],u-ind=[v,w],
kd_eqs=kindiffs)
: fr,frstar = KM. kanes_equations (forces ,particles)

Equilibrium point
eq-pt = [0, pi/2,0,0]
eq-dict = dict(zip ([x,th,v,w], eq_pt))

symbolically linearize about arbitrary

equilibrium

linear_state_matrix , linear_input_matrix , inputs =
KM. linearize (new_method=True)

sub in the equilibrium point and the parameters
f_A_lin = linear_state_matrix.subs(eq-dict)
f_B_lin = linear_input_matrix.subs(eq-dict)

m-mat = KM. mass_matrix_full.subs(eq-dict)

compute A and B
A = mmat.inv() * f_A_lin
B = mmat.inv () * f_B_lin

In [6]: A

Out [6]:

Matrix ([

[07 0, 1, 0]7

[07 07 07 1]9

[o, grmkk2xr 42/ (J+«M + J+m + Mrmkr *%2) , —d* (mk*x2xr %2 /((
M + m) *(J+M + Jsm

+ Msmxr*x2)) + 1/M + m)), 0],

[0, gxmxr*x(M + m) /(J+M 4+ Jxm + Msmsr*%2) |

—dsmxr /(J«M + Jsm + Msmkr*x2), 0]])

In [7]: B
Out [7]:
Matrix ([

[

[

0]7
[m*x2xr %2/ ((M + m)*(J+«M + Jsxm + Msmxr*%2)) + 1/(M 4+ m)]
[mkr /(J«M + Jsm + Mekmxr x%2)]

0]7

)

And the results can be written in a better form as

0 0 1 0
0 0 0 1
4= 0 JCM—I—?]T;’LTiMmrQ - Jc]\j—(l—{fcc—:nnj—?q;}mﬂ 0
0 gmr(M+m) dmr 0

JeM+Jem+Mmr?2 — JeM+Jem+Mmr?

44 CHAPTER 5. MODELING

and

0

0
B = Jetmr?

JeM+Jem~+Mmr?2
mr

JeM~+Jem~+Mmr?

5.3 Model of the Ball-on-Wheel plant

A more complex plant is represented by the Ball-on-Wheel system of figure 5.3, where a ball
must be maintened in the unstable equilibrium point on the top of a bike wheel.

/ phl, wl, T

X

-

Figure 5.3: Ball-On-Wheel plant

In this system we have 4 reference frames. The frame N is the main reference frame, NO rotates
with the line connecting the centers of mass of the wheel (O) and of the ball (CM2), N1 (x4,
y1) rotates with the wheel and N2 (x9, y2) is body-fixed to the ball.

The radius of the wheel and of the ball are respectively R; and Rs. The non sliding condition
is given by

(R1 + Rs) - pho = Ry - phi + Ry - pho

The input of the system is represented by the torque 7" applied to the wheel.

5.3. MODEL OF THE BALL-ON-WHEEL PLANT

5.3.1 Modules and constants

In [1]: from sympy import symbols, Matrix, pi
...: from sympy.physics.mechanics import =
import numpy as np

phO, phl, ph2 = dynamicsymbols(’phO_phl._ph2”)
wl, w2 = dynamicsymbols(’wl_w2’)

T = dynamicsymbols(’'T’)
J1, J2 = symbols(’J1.J2")

M1, M2 = symbols(’M1.M2")
R1, R2 = symbols('R1_R2’)

d1 = symbols(’dl’)
g = symbols(’g’)
t = symbols(’t ")

5.3.2 Reference frames

In [2]: N = ReferenceFrame(’'N”)

O = Point (’0’)
O.set_vel (N,0)

ph0 = (Rlxphl+R2+ph2)/R1

NO = N.orientnew (’NO’,’ Axis’ ,[phO,N.z])
N1 = N.orientnew (’N1’,’ Axis’ ,[phl,N.z])
N2 = N.orientnew (’N2’,’Axis’ ,[ph2,N.z])
Nl.set_ang_vel (N,wlxN.z)
N2.set_ang_vel (N,w2«N.z)

5.3.3 Centers of mass of the ball

In [3]: CM2 = O.locatenew ('CM2’ ,(R1+R2)*NO0.y)
CM2. v2pt_theory (O,N,NO)

Out [3]: (—Rlxphl’_.—_R2*xph2’)*NO0.x

46 CHAPTER 5. MODELING

5.3.4 Masses and inertias

In [4]: Iz = outer(N.z,N.z)
...t InlT (J1xIz, O)
In2T (J2%1z, CM2)

Bl = RigidBody(’Bl’, O, NI, M1, InlT)
B2 = RigidBody(’B2’, CM2, N2, M2, In2T)

5.3.5 Forces and torques

In [5]: #forces = [(N1, (T-disxwl)+N.z), (CM2—M2xg*N.y)]
forces = [(N1, T«N.z), (CM2—M2xg«N.y)]

kindiffs = [phl.diff(t)—wl,ph2.diff(t)—w2]

5.3.6 Kane’s model and linearized state-space matrices

In [6]: KM = KanesMethod (N, q_-ind=[phl, ph2],u_ind=[wl, w2
] ,kd_eqs=kindiffs)
: fr, frstar = KM. kanes_equations (forces ,[B1, B2])

In [7]: # FEquilibrium point
eq_-pt = [0, 0, 0, 0, O]
eq-dict = dict(zip ([phl,ph2,wl,w2, T], eq-pt))

In [8]: # symbolically linearize about arbitrary
equilibrium
linear_state_-matrix , linear_input_-matrix , inputs =
KM. linearize (new_method=True)

sub in the equilibrium point and the parameters
f_A_lin = linear_state_matrix.subs(eq-dict)
f_B_lin = linear_input_matrix.subs(eq_-dict)
m-_mat = KM. mass_matrix_full.subs(eq_-dict)

compute A and B
A = m_mat.inv ()
B = m_mat.inv ()

f_A_li
f_B

*
*

5.3. MODEL OF THE BALL-ON-WHEEL PLANT 47

In [9]: A
Out [9]:
Matrix ([

[0, 0, 1, 0],
[0, 0, 0, 1],

[—M2##2xR1%%2+%R2%+2%g / ((R1 + R2) *(J1%J2 + J1xM2xR2%%2 + J2
*M2xR1x%2)) +

M2+R1%% 2% g s (M2%%2%«R1%%2%«R2% %2/ ((J1 + M2+*R1%%2)*(J1%xJ2 + J1
M2+xR2%2 +

J2xM2+«R1%%2)) + 1/(J1 + M2+«R1%x2))/(R1 + R2), —M2xx2+xR1xR2
*x3xg /((R1 +

R2)*(J1%J2 + J1xM2xR2x%2 + J2x«M2xR1xx2)) + M2xR1xR2xg* (M2
#x2xR1%%2%R2%%2/((J1 +

M2x«R1#%2) % (J1xJ2 + J1xM2+xR2xx2 + J2+«M2«R1xx2)) + 1/(J1 +
M2xR1xx2))/(R1 + R2),

07 0]7

—M2# % 2% R1%% 3

R2xg /((R1 + R2) *(J1xJ2

+ J1+M2x«R2#%2 + J2xM2xR1%%x2)) + M2xR1xR2sxg*(J1 + M2xR1%%2)
J((R1 + R2)*(J1%J2 +

J1+«M2+xR2%%2 + J2xM2xR1%%2)),

—M2xx2*%R1#%2%xR2%%2xg /((R1 4+ R2)*(J1%J2 + J1*xM2xR2x%2 + J2x
M2«R1x%2)) +

M2+R2##2% g (J1 + M2xR1l%%2) /((R1 + R2)*(J1%J2 + J1«M2xR2%x2
+ J2x«M2«R1x%2)), O,

01])
In [10]: B
Out [10]
Matrix ([
[

0],
[

0]

)
[M2%#2+%R1#%2%R2%%2/((J1 + M2xR1%%2)%(J1%J2 4+ J1*+M2xR2%%2 +
J2xM2xR1xx2)) +
1/(J1 + M2+«R1x%x%2)],

[—M2xR1xR2/(
J1xJ2 + J1xM2xR2xx2 +
J2«M2+«R1%%2)]])
or as formula
0 0 10
0 0 01
JyMyR2g JoyMo R Rog
A= J1JaR1+J1JgRo+J1 My Ry R3+J1 My R3+Jo Mo R3+J3 Mo RI Ry J1Jo Ry+J1 Jo Ro+J1 Mg Ry R3+.J1 My R3+J3 Mg R§+J9 Mg R? Ry
J1 MyR Rog J1 MyR3g 00
(Rl+R2)(J1J2+J1MQR§+J2M2R%) (R1+R2)(J1J2+J1M2R§+J2MQR§)
and
0
2p2p2 0
B— My R RS + L
= (.71+M2R%)(J1J2+.71M2R§+JQJVIQR%) J1+Ma Ry
Mo Rq1Ro

T Uy Jg+J1 Mg R2+Jy My R2

48

CHAPTER 5. MODELING

Chapter 6

Control design

6.1 Pl+Lead design example

6.1.1 Define the system and the project specifications

In this first example we design a controller for a plant with the transfer function

= 5557
The requirements for the control are
s =0
for a step input
PM > 60°

and

wge = 10rad/s
The controller can be written in the form

1+s-T;, 14+a-Tp-s

=K
C(s) s-T; 1+s-Tp

with a PI and a lead part.
We have to design the controller and find the values of T;, o, Tp and K. The full design is
performed using the bode diagram.

After installing the required modules, we can define the plant transfer function and the require-
ments of the project.

49

20 CHAPTER 6. CONTROL DESIGN

In [1]: # Modules

In [2]: from matplotlib.pyplot import =

In [3]: from control import x
In [4]: from numpy import pi, linspace
In [5]: from scipy import sin, sqrt

In [6]: from supsisim.RCPblk import

In [7]: from supsictrl.ctrl_utils import =

In [8]: from supsictrl.ctrl_repl import x

In [9]: g=tf([1],[1,6,5])

In [10]: bode(g,dB=True);

In [11]: legend ([’G(s)’],prop={’size’:10})

Out [11]:

(<matplotlib.axes.AxesSubplot at 0x7f85b5193550 >,
<matplotlib.legend.Legend at 0x7f85b47e6950>)
In [12]: wgec = 10 # Desired Bandwidth

In [13]: desiredPM = 60 # Desired Phase margin

Figure 6.1 shows the bode diagram of the plant.

I
i
o

| I
w N
o O

Magnitude (dB)
o o =
o O O

I
~
o

I
o]
o

-90 i i

N
© o

-20
-40
-60
-80

-100

-120

- 140

- 160

- 1801

10

Phase (deg)

Frequency (rad/sec)

Figure 6.1: Bode diagram of the plant

6.1.2 PI part

Now we choose the integration time for the PI part of the controller. In this example we set

6.1. PI+LEAD DESIGN EXAMPLE

T; = 0.15s

In [14]: # PI part
In [15]: Ti=0.15
In [16]: Gpi=tf ([Ti,1],[Ti,0])
In [17: print "Pl_part_is:.”, Gpi
PI part is:
0.15 s + 1
0.15 s
In [18: figure ()
Out[18: <matplotlib. figure.Figure at 0x7f85b47eaall>

In [19: bode(g,dB=True, linestyle="dashed’);

In [20 hold
Out[20 <function matplotlib.pyplot.hold>

In [21 bode(Gpi*g,dB=True);

In [22: legend (([’G(s)’, Gpi(s)*G(s)’]) ,prop={"size’:10})

Out[22:

(<matplotlib.axes.AxesSubplot at 0x7f85b4806250 >,
<matplotlib.legend.Legend at 0x7{85b4303850>)

Figure 6.2 shows the bode plot of the plant with and without the PI controller part.

40
20

N I
: Gpi(s)*G(s)|]

-20

Magnitude (dB)

| | I
0w o »
o O O

-100%- : i : i

[y
OO
=
o

|
a1
o

Phase (deg)
|
i
o
o

-150

-200% : _— : —_—
10 10
Frequency (rad/sec)

Figure 6.2: Bode diagram: G (dashed) and Gpi*G

52 CHAPTER 6. CONTROL DESIGN

6.1.3 Lead part

Now we can get the PM at the frequency wy. in order to calculate the additional phase contri-
bution of the lead part of the controller.

In [23: mag, phase ,omega = bode(Gpixg,[wgc],Plot=False)
In [24: ph = phase[0]
In [25: if ph>=0:
: ph = phase[0] —360;
In [26: Phase = —180+desiredPM
In [27: dPM = Phase—ph

In [28: print ”Additional_phase_from_Lead_part:.”, dPM
Additional phase from Lead part: 61.4144232114

Now it is possible to calculate the lead controller by finding the values of a and T'p.

In [29]: # Lead part
In [30]: dPMrad = dPM/180x* pi
In [31]: alfa = (1+sin(dPMrad))/(1—sin (dPMrad));

In [32]: print ”Alpha_is:.”, alfa
Alpha is: 15.4073552425

In [33]: TD = 1/(sqrt(alfa)xwgc);

In [34]: Glead = tf([alfaxTD,1],[TD,1])

In [35]: print ”"Lead_part_is:.”, Glead

Lead part is:

0.3925 s + 1

0.02548 s + 1

In [36]: figure()

Out[36]: <matplotlib.figure.Figure at 0x7f85b43462d0>

In [37]: bode(g,dB=True, linestyle="dashed’);

In [38]: hold
Out[38]: <function matplotlib.pyplot.hold>

In [39]: bode(GpixGleadxg, dB=True);

In [40]:

legend (([’G(s)’, Gpi(s)*G(s)’, Gpi(s)*xGLead(s)*G(s)’]),
prop={’size ’:10})

Out [40]:

(<matplotlib.axes.AxesSubplot at 0x7f85b43736d0 >,

<matplotlib.legend.Legend at 0x7f85b3b1f450>)

Figure 6.3 shows now the bode plot of the plant, the plant with the PI part and the plant with
PI and Lead part

6.1. PI+LEAD DESIGN EXAMPLE 93

N
o

== ‘G(s)
Gpi(s)*G(s)

N
o

%? 0 | — Gpi(s)*GLead(s)*G(s)
8 -20
2
£ -40f
g - 60|
s
- 80 ; :
~100 ; ; i
10" 10° 10" 10° 10°
0

I
3
o

Phase (deg)
iR
o
o

-150

o | i e St
10 10 10

Frequency (rad/sec)

Figure 6.3: Bode diagram - G (dashed), Gpi*G (dotted) and Gpi*GLead*G

6.1.4 Controller Gain

The last step is to find the amplification K of the controller which move up the bode gain plot
in order to obtain the required crossover frequency wye.

In [41]: mag,phase,omega = bode(GpixGleadxg,[wegc], Plot=

False)
In [42]: print ”Phase.at._wgc.is:.”, phase[0]
Phase at wgc is: —120.0

In [43]: K=1/mag[0]

In [44]: print ”Gain.to.have MAG_.at._.gwc.0dB:.”, K
Gain to have MAG at gwc 0dB: 23.8177769548

In [45]: figure ()
Out[45]: <matplotlib.figure.Figure at 0x7f85b3a703d0>

In [46]: bode(g,dB=True, linestyle="dashed’);

In [47]: hold
Out[47]: <function matplotlib.pyplot.hold>

In [48]: bode(GpixGlead*g, dB=True, linestyle="—.");
In [49]: bode(K«GpixGlead*g, dB=True);

In [50]:

legend ((['G(s)’, Gpi(s)*G(s)’, Gpi(s)*GLead(s)*G(s)’,
"K«Gpi(s)*xGLead(s)*G(s)’]) ,prop={’size ’:10})

Out [50]:

(<matplotlib.axes.AxesSubplot at 0x7f85b3a76690 >,
<matplotlib.legend.Legend at 0x7f85b33e6f90 >)

In the figure 6.4 we see now that the gain plot has been translated up to get 0dB at the gain
crossover frequency wg..

o4 CHAPTER 6. CONTROL DESIGN

60 — T —
40

[= ©

Gpi(s)*G(s)

""" - Gpi(s)*GLead(s)*G(s)
K*Gpi(s)*GLead(s)*G(s)

Magnitude (dB)

- 1001

—100F

Phase (deg)

-150

oo : ..‘. . : ‘
10 10

Frequency (rad/sec)

Figure 6.4: Bode diagram - G (dashed), Gpi*G (dotted), Gpi*GLead*G (dot-dashed) and
K*Gpi*GLead*G

6.1.5 Simulation of the controlled system

Now it is possible to simulate the controlled system after closing the loop.

In [51]: Contr = K«GpixGlead

In [52]: print ”Full_controller:.”, Contr
Full controller:
1.402 s"2 + 12.92 s + 23.82

0.003821 s"2 + 0.15 s

In [53]: mag,phase,omega = bode (KxGpixGleadxg,[wgc], Plot=

False)

In [54]: print ”Data_at._wgc.—_wgc:.”, omega[0], ”Magnitude
:.” ,mag[0], ”Phase:

” phase [0]

Data at wgc — wgc: 10 Magnitude: 1.0 Phase: —120.0

In [55]: gt=feedback (K«xGpixGleadxg,1)
In [56]: t=linspace(0,1.5,300)
In [57]: y,t = step(gt,t)

In [58]: figure()
Out [58]: <matplotlib.figure.Figure at 0x7f85b3514290>

In [59]: plot(t,y), xlabel(’t’), ylabel(’y’), title(’Step-
response._of_the

controlled_plant)

Out [59]:

([<matplotlib.lines .Line2D at 0x7f85b34252d0 >],

In [60]: grid ()

6.2. DISCRETE-STATE FEEDBACK CONTROLLER DESIGN HY)

The simulation of the controlled plant with a step input is shown in figure 6.5.

12 Step response of the controlled plant
. T T T T T

08 [o S o R R S

0.4k R e S S SR,]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 6.5: Step response of the controlled plant

6.2 Discrete-state feedback controller design

6.2.1 Plant and project specifications

In this example we design a discrete-state feedback controller for a DC servo motor.

We want to have a controlled system with a maximum of 4% overshooting and an error e,, = 0
with a step input. In addition we desire a bandwidth of the controlled system of at least 6
rad/s.

The step response of the motor with the current input of I;;, = 500mA) has been saved into
the file “MOT”.

6.2.2 Motor parameters identification

We try to find the parameters of the srvo motor using a least square identification from the
collected data.
The transfer function of the DC motor from input current /(s) to output angle ®(s) can be
represented as

®(s) KT
Lin(s) s2+s-D/J

26

CHAPTER 6. CONTROL DESIGN

6.2.3 Required modules

In

In

In

In

In

In

: from
: from
: import numpy as np
: import scipy as sp
: from
: from

: from

from
from

scipy .optimize import leastsq

scipy .signal import step2

control import =x
control.Matlab import x*
supsisim . RCPblk import =x

supsictrl.ctrl_utils import =x
supsictrl.ctrl_repl import x*

6.2.4 Function for least square identification

We define now the function residuals which returns the error between the collected and the
simulated data. Using this function we can try to minimize the error using a least square

approach.

In

In

[8]:

[9}f

Motor response for least square identification

def

residuals(p, y, t):
[k,alpha] = p

g = tf(k,[1,alpha,0])
Y, T = step(g,t)
err=y—Y

return err

6.2.5 Parameter identification

We load the collected data to perform the parameter identification of the numerator K = K;/J
and the denominator value a« = D//J.

6.2. DISCRETE-STATE FEEDBACK CONTROLLER DESIGN

In

In

In

In

In

In

In

In

In

In

In

In

[10]:
[11]:
[12]:
[13]:
[14]:
[15]:
[16]:
[17]:
[18]:
[19]:
[20]:

[21]:

Identify motor

x = np.loadtxt ('MOT’);

t = x[:,0]

y = x[:,2]

Io = 1000

yl = y/lo

p0 = [1,4]

plsq = leastsq(residuals, p0, args=(yl, t))

kt = 0.0000382 # Motor torque constant
Jm=kt /plsq [0][O] # Motor Inertia

Dm=plsq [0][1]*Jm # Motor friction

g=tf ([kt/Jm],[1,Dm/Jm,0]) # Transfer function

6.2.6 Check of the identified parameters

o7

The next step is to check how good our parameters have been identified by comparing the
simulated function with the measured data (see figure 6.6)

In

In

[22]: Y,T = step(g,t)
[23]: plot(T,Y,t,yl), legend((’Identified._transfer.
function’,’Collected

data’) ,prop={’size ’:10},loc=2), xlabel(’t’), ylabel(’y’),

title (’Step

response’), grid ()
Out[23]:
([<matplotlib.lines.Line2D at 0x7fb9alb6b590 >,
<matplotlib.lines.Line2D at 0x7fb9alb6b710 >],
<matplotlib.legend .Legend at 0x7fb9alb6bbl0 >,
<matplotlib.text.Text at 0x7fb9a3cec310 >,
<matplotlib.text.Text at 0x7fb9alb8b910 >,
<matplotlib.text.Text at 0x7fb9alb3cbd0 >,
None)

6.2.7 Continuous and discrete model

For the state controller design we need to model our motor in the state-space form. We define
the continuous-state and the discrete-state space model

o8 CHAPTER 6. CONTROL DESIGN

Step response

0.16 T
— Identified transfer function
— Collected data : : :
0.14F S A D e
. . . . /
///
0.12} g s

0.10|

> 0.08}

0.06

0.04

0.02}

0.00
0

Figure 6.6: Step response and collected data

In [24]: # Design Controller Motor 1
In [25]: a=[[0,1],[0, —Dm/Jm]]
[{o],[1]]

In [27]: c¢=[[kt/Jm,0]];

In [26]: b

In [28]: d=[0];

In [29]: sysc=ss(a,b,c,d) # Continuous
state—space form

In [30]: Ts=0.01 # Sampling time

In [31]: sys = c2d(sysc,Ts, zoh’) # Discrete ss
form

6.2.8 Controller design

For the controller we set a bandwidth to 6 rad/s with a damping factor of £ = V2 /2.

6.2. DISCRETE-STATE FEEDBACK CONTROLLER DESIGN

In [32]: # Control system design

In [33]: print rank(ctrb(sys.A,sys.B))== #
Controllability check

True

In [34]: # State feedback with integral part

In [35]: wn=6

In [36]: xi=np.sqrt(2)/2

In [37]: angle = np.arccos(xi)

29

We add a discrete integral part to eliminate the steady state error and we obtain an additional
state for the error between reference and output signal. The two matrices ® and I' required by
the pole placement routine must be extended with the additional state.

In

In

In

In

In

In

In

In

In

[38]: cl_poles = —wnxarray ([1, exp(lj*angle), exp(—1j=x
angle)]) # three poles

[39]: cl-polesd=sp.exp(cl_-polesxTs) # Desired
discrete poles

[40]: szl=sp.shape(sys.A);
[41]: sz2=sp.shape(sys.B);

[42]: # Add discrete integrator for steady state zero
error

[43]: Phi_f=np.vstack ((sys.A,—sys.CxTs))
[44]: Phi_f=np.hstack ((Phi_f,[[0] ,[0] ,[1]]))
[45]: G_f=np.vstack ((sys.B,zeros((1,1))))

[46]: k=place(Phi_-f ,G_f,cl_polesd)

6.2.9 Observer design

Now we can implement the observer: in this example we choose a reduced-order observer and
we can use the function provided by the yottalab module to obtain it.

60

CHAPTER 6. CONTROL DESIGN

In [47]: #Reduced order observer

In [48]: print rank(obsv(sys.A,sys.C))==2 #
Observability check

True

In [49]: p_oc=—10+max(abs(cl_poles))

In [50]: p-od=sp.exp(p-ocx*Ts);

In [51]: T=[0,1]

In [52]: r_obs=red_obs(sys,T,[p-od])

6.2.10 Controller in compact form

The yottalab function comp_form_i allows to integrate the controller gains and the observer
into an unique block.

In

In

[563]: # Controller + integral + observer in compact

form

[54]:

contr_I=comp_form_i(sys,r_obs k)

6.2.11 Anti windup

The last operation consists in dividing the controller into an input part and a feedback part in
order to realize the anti-windup mechanism and considering the saturation block.

In

In

[565]:

[56]:

Anti windup

ss_in , ss_out]=set_aw (contr_I
g g

,[0,0])

6.2.12 Simulation of the controlled plant

The block diagram of the final controlled system is represented in figure 6.7.
It is not possible to simulate the resulting system in Python because of:

e The controller is discrete and the plant is continuous. At present it is not possible to
perform hybrid simulation usin the control package. In some cases we can substitute the
plant with the discrete-time system and perform a discrete simulation. Hybrid simulation
is possible using the pyEdit application described in the next chapter.

e The block “CTRIN” has two inputs. The step function can only find the output from a
single input.

6.2. DISCRETE-STATE FEEDBACK CONTROLLER DESIGN 61

- —

G(z) I PRINT

> .—._/_._._. G(s)

SAT PLANT ouT

+ G(z) +

CTRFBK

REF

CTRIN

Figure 6.7: Block diagram of the controlled system

e The control toolbox can handle only linear system (and there is a saturation in the final
system).

62

CHAPTER 6. CONTROL DESIGN

Chapter 7

Hybrid simulation and code generation

7.1 Basics

CACSD environments usually offer a graphical editor to perform the hybrid simulation (Matlab<>Simuli
Scioslab<+Scicos, Scilab<»xCos etc.).

The “pyEdit.py” application should cover this task for the Python Control environment.

In the following we’ll explain how it is possible, from the pyEdit schematics, to generate code

for the hybrid simulation. Code for the RT controller can be generated in the same way: users

should only replace the mathematical model of the plant with the blocks interfacing the sensors

and the actuators of the real system.

7.2 pyEdit

7.2.1 The editor

The application “pyEdit* is a block diagram editor to design schematics for simulation and
code generation.

Starting points for the pyEdit application were the PySimEd project ([20]) and the gtnodes-
develop project ([21]).

PyEdit offers the most used blocks in control design. A little set of these blocks is shown in
figure 7.1.

7.2.2 The first example

Using the editor we wont create the block diagram of figure 7.2.
We open a shell and we give the command

pyEdit

The application opens 2 windows as shown in figure 7.3

The window on the left shows the library with the available blocks and on the right we have
the diagram window. Now we can start to draw our block diagram.

From the library window we can choos the tab "input“ and using "drag and drop* we can get
the block ”Step“ and move it into the editor window. We can do the same operation with the
"LTT continous“ (from tab ”linear®) and the "Plot“ (from tab ”output®) blocks.

63

64

X

CHAPTER 7. HYBRID SIMULATION AND CODE GENERATION

AD o G(s) > +_/_.

SQUARE

il

AD css SATUR

SUM

s D/A

STEP

SINUS

DA
PRINT o
L u / °)
Z PRINT
ZDELAY
SWITCH

UNIX

UNIX SOCKET

SOCKET

SOCK_C
SOCK_S -

Figure 7.1: Some pyEdit blocks for control design

Plant Plot

Figure 7.2: The first example

7.2. PYEDIT 65

untitled

File Edit il i settings

e S EEEEErAls

toFile

5
=
=
B
a
2
2
5
=
£
m
£
5
kS
£
£
z
=
2
=

5

2
5

El

Figure 7.3: The pyEdit environment

Now we should obtain the diagram shown in figure 7.4

C =

Step LTI continous Plot

Figure 7.4: Result from the drag and drop operations
Before starting with the connection, we set some parameters to the blocks.

e Souble click with the mouse on the block "LTT continous®. In the dialog windows set the
System to tf(1,[1,1])

e Click the right mouse on the LTI continous block“. In the new menu choose ”Change
Name*® and rename it as Plant.

e Click the right mouse on the Plot block. In the new menu choose “Block 1/0Os” and set
the number of inputs to 2.

66

CHAPTER 7. HYBRID SIMULATION AND CODE GENERATION

Step Plant Plot

Figure 7.5: Result after parametrization

Figure 7.5 shows the new diagram.
Now we can proceed with the connections.

Move the mouse on the output of the block “Step”: the mouse pointer should become a
“cross”. Click and release the left mouse button.

Now we can move the mouse to the input of the block “Plant”: the mouse pointer should
become a “cross”. Click and release the left mouse button.

Do the same operation from the output of the block “Plant” to the second input of the
block “Plot”

Now move to the node (the little circle) between the “Step” and the block “Plant”: the
mouse pointer should become a “cross”. Click and release the left mouse button.

move the mouse up, click, and continue to move left the mouse. Left of the position of the
block “Plot”, click and release again the left mouse button and then finish the connection
on the first input of the block “Plot” (click and release the left mouse button)

You should obtain the diagram of figure 7.2
Now we are able to simulate the diagram.

e [rom the menu “Simulation” choose “Simulate” or click on the button “Simulate” on the

toolbar (the button with the triangle).

e Double click with the mouse on the block “Plot” to get the graphical output of the

simulation (see figure 7.6).

7.2.3 Personalize the most used blocks

A special file “common.blks” is defined in the “resources/block/block” folder. This file contains
a list of clocks, that the user can modify to have its own most used blocks. The blocks are
shown in the library both in the “common” tab and in the specific tab.

7.2. PYEDIT 67

& Figure 1 OenEles

104

0.8 4

0.6 1

0.4 1

0.2

0.0 1

0 2 4 6 8 10

€3 +a/=

Figure 7.6: Result (plot) of the simulation

7.2.4 Defining new blocks

The user can define new blocks and integrate them into the pyEdit application.

First of all he have to define the “.xblk” file, using for example the application “defBlock” (which
is part of pycontrol.tgz). This block must be moved in the folder “ /Documents/PYTHON /blocks”.

A new function must be inserted in the file “ /Document/PYTHON /addBlocks.py” (the file
must be created the first time that the user insert a new block!). The first line of this file
must be:

from supsisim.RCPblk import RCPblk

Then, the user must define a function for each new block. In the following there are some
example with 3 blocks, the first with only input ports, the second with only output ports, and
the last with both input and output ports.

68 CHAPTER 7. HYBRID SIMULATION AND CODE GENERATION

from supsisim.RCPblk import RCPblk

def digilent _AOBlk(pin, ch):

if np.size(pin) != 1:
raise ValueError(”Block_should_have_l_input.port;.
received %i_!" %

np.size (pin))

blk = RCPblk(’digilent_analog_output’,pin

2 [1,10,0],0,[],[ch])
return blk

def digilent_AIBlk (pout, ch, rng, offset):
if np.size(pout) != 1:
raise ValueError(” Block_should_have_l_input._port;.
received %i_!" %
np.size (pout))

blk = RCPblk(’digilent_analog_input’ ,[],pout,[0,0],0,]
rng, offset],[ch])
return blk

def MeanFilterBlk (pin, pout, N):
blk = RCPblk(’meanfilter ’,pin ,pout,[0,0],1,[],[N,0])
return blk

The implementation of the RCPblk class is defined in the file “toolbox/supsisim/src/RCP-
blk.py”.

7.2.5 Some remarks

e the simulation result (Plot) is available only after the simulation. Please be sure to
restart the simulation before opening the plot result. The simualtion creates a file with
the name of the block in “/tmp” folder: this file is overwritten by every new simulation.

e For the simulation, the application creates and compile a C-executable. The sources are
written in the folder “xxxxxx_gen”, where “xxxxx” is the name of the diagram.

7.3 The editor window

7.3.1 The toolbar

The application offers set of operations in the toolbar as shown in the figure 7.7.

7.3.2 Operations with the right mouse button

Depending on the position of the mouse, clicking and releasing the right mouse button leads to
different behaviours.

7.3.3 Operations with the right mouse button on a block

Clicking with the right mouse button on a block opens a popup menu with the following
commands:

7.3. THE EDITOR WINDOW 69

@ e B3

untitled
. T -
inear | matt < | Fle Edit Simulation Settings

@, Al mE =B call e
File ops CopyiPaste , % 1’,%

rerator

Figure 7.7: The pyEdit application

Block I/Os to modify (if possible) the number of input and output ports of the block
Flip block Flip left/right the block
Change name Each block in the diagram must have a unique name

Block parameters to modify the parameters: this operation is available with a double click
tool

Clone block to get a copy of the selected block

7.3.4 Operations with the right mouse button on a connection

Moving the mouse on a connection, change the pointer to a pointing hand and by clicking with
the right mouse button a popup menu is opened with the following commands:

Delete conncetion deletes the pointed connection

Insert node inserts a new node on the connection. This is needed for examples if we have to
draw a new connection.

70 CHAPTER 7. HYBRID SIMULATION AND CODE GENERATION

7.3.5 Operations with the right mouse button on a node

Moving the mouse on a node, change the pointer to a cross and by clicking with the right mouse
button a popup menu is opened with the following commands:

Delete node deletes the node and the connections associated with this node.

Bind node eliminate the node without eliminate the connection.

7.3.6 Behaviour of the right mouse button by drawing a connection

Clicking the right mouse button by drawing a connection, put a new node in the mouse position
and exit the drawing mode.

7.4 Basic editor operations

7.4.1 Inserting a block

Get a block from a library and drag it into the main window.

7.4.2 Connecting blocks

e Move to the output port of a block or to a node.
e (Click and release the left button of the mouse.
e Move the mouse to draw the connection.

e Click again the left mouse on an input port of a block to finish the connection or click
the mouse to obtain a "node“ and to continue to draw the connection.

7.4.3 Inserting a node

e Move to a connection and click the right mouse button

e Select the ”insert node“ menu.

If a new "node* is needed into a connection simply click on it with the right mouse button.

7.4.4 Deleting a block or a node

e Move to a block or node and click with the right mouse button.

e Choose the submenu ”delete“

7.5. REMOVE A NODE 71

7.5 Remove a node
e Move to the node.
e Click with the right mouse button on the node.

e Choose the submenu ”Bind node* The connection is maintained but the node is cleared.

72

CHAPTER 7. HYBRID SIMULATION AND CODE GENERATION

Chapter 8

Simulation and Code generation

Each element of a block diagram is defined with three or four functions:

The interface function that describes how the block must be drawn in the block diagram

The Implementation function that contains the code to be executed to perform the tasks
related with this block.

The translation of the block into the RCPblk class described in the RCPblk.py module

A dlg function to implement a special dialog box for the block parameters (only if required)

In addition we need to know all the nodes connected to the inputs and to the outputs of each
block.

8.1 Interface functions

Each block is defined into a file with extension “.xblk”, stored in the “resources/blocks/blocks”
folder. The file is defined as a Python dictionary:

{"1ib": "math", "name": "Sum", "ip": 2, "op": 1, "st": 1, "icon": "SUM", "params": "sumBlk|Gains: [1,-1]"}
using the following fields:

“lib” the name of the tab for the block library (example “tab”:“linear”)

“name” the default name of the block

“ip” number of inputs

“op” number of outputs

“st” flag which indicates if the number of I/O can be modified

“icon” the name of the “.svg” file with the icon of the block

“param” the parameters of the block

73

CHAPTER 8. SIMULATION AND CODE GENERATION

Library R

ican | comedi | input | Iinearl math | nonlin | |P

oy
o AID

BAUMER_ENC EPOS_AD

22| G

EPOS_ENC EPOS_MOT |

o E

EPOS_MOT X MAXON_ENC

Figure 8.1: Window with the block libraries

8.2. THE IMPLEMENTATION FUNCTIONS 75

The first string in the param field is used as name of the Python function used to prepare the
block to be translated into C-Code.

The block libraries are loaded after launching the pyEdit application as shown in figure 8.1
Each block must be renamed with a unique name (popup menu “Change name”), and its
parameters can be modified directly in the pyEdit application with a double click.

8.2 The implementation functions

In a schematic, each block can be described with the functions (8.1) for continuous-time systems
or (8.2) for discrete-time systems.

y = g(x,u,t)
x = f(x,u,t) (8.1)
Vi = 8(xk uk)
8.2
Xk+1 = f(Xkﬂlk,k) ()

The g(...) function represents the static part of the block. This function is used to read inputs,
read sensors, write actuators or update the outputs of the block.

The second function (f(...)) is only required if the block has internal states, and it is only used
by dynamic systems. In addition, each block implements two other functions, one for the block
initialization and one to cleanly terminate it.

All these functions are programmed as C-files, compiled and archived into a library.

8.3 Translating the block into the RCPblk class

Before generating the C-Code, each block in the diagram must be translated into an element of
the RCPblk class (see section 8.7 for more details). For each block, the corresponding function
(the name is given by the 1. string in the parameters line) must exists and should be declared
with the required parameters. This function is responsible to fill all the RCPblk fields.

8.4 Special dialog box for the block parameters

Usually, the graphic editor build a simple dialog box to enter the block parameters.

In special cases, it is possible to write a special function to enter the parameters.. In this case,
the user should provide this function in the RCPDIg.py file. The name of this function is built
using the first string of the parameter line, by subsistuting the las 3 letters “Blk” with “Dlg”.
This new function must receive as input:

e Numper of inputs
e Number of outputs
e The parameters line

This function returns a modified parameters line. Anexample is the “PlotDlg” function in the
file “toolbox/supsisim/src/RCPGDIg.py”.

76 CHAPTER 8. SIMULATION AND CODE GENERATION

8.5 Example

We can show with an example what happens with a block in the different phases from block to
RCPblk class.

The “Pulse generator” input block is stored in the “PulseGenerator.xblk” file with the following
infos

{"1ib": "input", "name": "PulseGenerator", "ip": 0, "op": 1, "st": 0, "icon":
"SQUARE", "params": "squareBlk|Amplitude: 1|Period: 4|Width: 2|Bias: O|Delay:
0"}

The block has no inputs, 1 ouput, the I/O are not modifiable (settable=0).
After a double click on the block, the “params” field is parsed and translated into the the dialog
box shown in figure 8.2.

pyEdit e [ml el

Amplitude |1

Period |4
TUUe e T
B : Delay |D
PulseGenerator
8] 4 CAMCEL

Figure 8.2: Dialog box for the Pulse generator block

By generating the element of the class RCPblk, the function “squareBlk” is called with the
following parameters:

SQUARE = squareBlk(pout, Amp, Period, Width, Bias, Delay)

where

pout is the matrix with the id of the inputs (connections)
Amp is the signal amplitude

Period is the period of the signal

width is the duration where the signal has value “Amp-bias”
bias is an offset for the signal

delay represent the time wenn the signal start

8.6. THE PARAMETERS FOR THE CODE GENERATION 77

The function translate the block into the following object of the RCPblk class

Function : square

Input ports : [

Output ports : [2]

Nr. of states : [0 0]

Relation u->y : 0

Real parameters : [4 8 3 0 12]

Integer parameters : []

8.6 The parameters for the code generation

Before clicking on the “code generation” tool on the toolbar, the user should fill some parameters
in a dialog box (see figure 8.3).

pyEdit AR R

Template Makefile [sim.tmi BROWSE...
Additional Objs | BROWSE... |

sampling Time ~ [0.01

Parameter script | BROWSE... |

Final Time |10

oK | CANCEL |

Figure 8.3: Dialog for code generation

In this dialog it is possible to choose the “template makefile” for simulation or real-time ex-
ecution, the sampling time of the system and some additional libraries, required by special
blocks.

8.7 Translating the diagram into elements of the RCPdlg
class

After this first setup it is possible to translate the block diagram into a list of elements of
the class RCPblk provided by the suspisim package. This class contains all the information
required for the code generation.

This class contains the following fields:

fcn: the name of the C-Function to be used to handle this block
pin: an array containing the id of the input nodes
pout: an array containing the id of the output nodes

nx: the number of internal states (continuous or discrete)

78 CHAPTER 8. SIMULATION AND CODE GENERATION

uy: a flag which indicates a direct dependency between input and output signals (feed-through
flag).

realPar: an array containing the real parameters of the block
intPar: an array containing the integer parameters of the block

str: a string related to the block

For example, the diagram in figure 8.4 is translated into the following code

from supsisim.RCPblk import =

STEP = stepBlk ([1], 1, 1)

PM = sumBlk ([1,3],[2], [1,-1])
CSS = cssBlk ([2],[3], sys, 0)
PRINT = printBlk ([1,3])

blks = [STEP,PM,CSS,PRINT,]

fname = ’step’
genCode (fname, 0.01, blks)
genMake (fname, ’sim.tmf’, addObj = ')
. L]
- |
L PR — PRINT
1 * 2
I j} . n G(s) e —
STEP T
CSS PRINT
PM
- -

Figure 8.4: Simple block diagram

The block CSS has one input connected to node @ and one output connected to node ®), it is
a continuous transfer function (cssBlk, 1/(s + 1)) with zero initial conditions. The PM block
has 2 inputs connected to node @ and @, one output connected to node @ and performs a
subtraction of the output from the input signals.

8.8 Translating the block list into C-code

8.8.1 Finding the right execution sequence

Before starting with the translation of the block diagram into C-code, we need to find the
correct sequence of execution of the blocks. This task can be performed by analizing the uy
flag of the block object. When in a block the uy flag is set to 1, we need the output of the
blocks connected at his input before starting to update his output. This means that we have

8.8. TRANSLATING THE BLOCK

LIST INTO C-CODE

79

to generate a dependency tree of all the blocks and then we must rearrange the order of the

block list for code generation.

In linear blocks for examples, the uy flag is set if the D matrix is not null.

In the blockdiagram of figure 8.4, the PM and the PRINT blocks require to know their inputs

before update their outputs.

In [5]: NrOfNodes = 3

In [6]: ordered_list

print n
Function
Input ports
Outputs ports
Nr. of states

Relation u—>y
Real parameters

Integer parameters :
String Parameter

Function

Input ports
Outputs ports
Nr. of states
Relation u—>y
Real parameters
Integer parameters :
String Parameter

Function

Input ports
Outputs ports
Nr. of states
Relation u—>y
Real parameters
Integer parameters :
String Parameter

Function

Input ports

Outputs ports

Nr. of states
Relation u—>y

Real parameters
Integer parameters :
String Parameter

= detBlkSeq (NrOfNodes, blks)

In [7]: for n in ordered_list:

[2]
[3]
[2 0]

[[0. 0. —1. 1. —1. —1.

0. 0. —1. 0. 0. 0.]]
[2 1 1 1 5 7 9 10]

[1 -]

If the block diagram contains algebraic loops it is not possible to find a solution for the det-
BlkSeq function and an error is raised.

8.8.2 Generating the C-code

Starting from the ordered list of blocks, it is possible to generate C-code.

The code contains 3 functions:

e The initialization function

80 CHAPTER 8. SIMULATION AND CODE GENERATION

e The termination function

e The periodic task

8.8.3 The init function

In this function each block is translated into a python_block structure defined as follows:

typedef struct {
int nin; /* Number of inputs =/
int nout; /+ Number of outputs x*/
int *nx; /* Cont. and Discr states =/
void xxu; /* inputs */
void xky; /+ outputs x/
double xrealPar; /+* Real parameters x/
int *intPar; /+ Int parameters x*/
char * str; /* String x/
void * ptrPar; /+ Generic pointer =x/
}python_block;

The nodes of the block diagram are defined as “double” variables and the inputs and outputs
of the blocks are defined as vectors of pointers to them.

/+ Nodes x/

static double Node_1]]
static double Node_2[]
static double Node.3[] =

[l
e)

/* Input and outputs x/
static void *inptr_0]
static void *xoutptr_0[] = {0};

|
~~

o
—

static void *outptr_1[] = {0};
static void *inptr_2[] = {0,0};
static void *inptr_3[] = {0,0};
static void *outptr_3[] = {0};
inptr_0[0] = (void *) Node.-2;
outptr_0[0] = (void %) Node.3;
block_test [0].nin = 1;
block_test [0].nout = 1;
block_test [0].nx = nx_0;
block_test [0].u = inptr_0;
block_test [0].y = outptr_0;

After this initialization phase, the implementation functions of the blocks are called with the
flag INIT.

css (INIT, &block_-test [0]
step (INIT, &block_test [1
print (INIT, &block_test |
sum(INIT, &block_test [3]

)
]);

)
]
2
)

8.9. THE MAIN FILE 81

8.8.4 The termination function

This procedure calls the implementation functions of the blocks with the flag END.

8.8.5 The ISR function

This procedure represents the periodic task of the RT execution. First of all, the implementation
functions are called with the flag OUT, in order to perform the output update of each blocks.
As a second step, the implementation functions of the block containing internal states (nx # 0)
are called with the flag STUPD (state update).

css (OUT, &block_test [0]) ;
step (OUT, &block_test[1]);
print (OUT, &block_test [2]);
sum (OUT, &block_test [3]);

css (OUT, &block_test [0]) ;
css (STUPD, &block_test [0]) ;

8.9 The main file

The core of the RT execution is represented by the “python_main rt.c” file. During the RT
execution, the main procedure starts a high priority thread for handling the RT behavior of
the system. The following main file, for example, is used to launch the executable in a Linux
preempt_rt environment.

82

CHAPTER 8. SIMULATION AND CODE GENERATION

void *rt_task (void *p)

{

param.sched_priority = prio;

if (sched_setscheduler (0, SCHED_FIFO, ¶m)==-—1){
perror (”sched_setscheduler_failed”);
exit(—1);

double Tsamp = NAME(MODEL, _get_tsamp) () ;

NAME(MODEL, _init) () ;

while (!end){
/* wait untill next shot x/
clock_nanosleep (CLOCKMONOTONIC,
TIMER_ABSTIME, &t, NULL);

/+ periodic task x/
NAME(MODEL, -isr) (T) ;

}
NAME(MODEL, _end) () ;

Chapter 9

Example

9.1 The plant

One of the educational plants available at the SUPSI laboratory is the system shown in fig-
ure 9.1. This example is located in to the “pycontrol/Tests/ControlDesign/DisksAndSpring”
folder,

Figure 9.1: The disks and spring plant

Two disks are connected by a spring. The goal for the students is to control the angle of the
disk on the right by applying an appropriate torque to the disk on the left.

The physical model of this plant can be directly calculated in python using for example the
sympy toolbox. Sympy can deliver a symbolic description of the system and through a python
dictionary it is possible to easily obtain the numerical matrices of the state-space representation
of the plant.

83

84

CHAPTER 9. EXAMPLE

In [4]: A
Out [4]:
matrix ([[0, 0, 1, O],
[07 07 07 1]7
[—c/J1, —c¢/J1, (=d — d1)/J1, —d/J1],
[—c/J2, —c/J2, =d/J2, (—-d — d2)/J2]])
In [5]: Bl
Out [5]:
matrix ([[0, O],
[0, 0],
[kt1/J1, O],

[0, kt2/J2]])
In [6]: B=B1[:,0]

In [7]: C
Out[7]: |

In [8]: C2
Out [8]: [0, 1, 0, O]

In [9]: D

Out[9]: [[0], [0]]
In [10]: D2
Out[10]: [0]

The control system toolbox and the additional “yottalab.py” package contain all the functions
required for the design of the controller. In this case we design a discrete-state feedback
controller with integral part for eliminating steady-state errors. The states are estimated with
a reduced-order observer. In addition, an anti-windup mechanism has been implemented. The
sampling time is set to 10 ms.

The yottalab module offers 3 functions that facilitate the controller design:

e The function red_obs(sys, T, poles) which implements the reduced-order observer for the

system sys, using the submatrix T (required to obtain the estimator C-matrix and the
desired state-estimator poles poles.

P=[C;T) = C*=C-P " =I,,04_y]

The function comp_form i(sys,obs,K,Cy) that transforms the observer obs with the
state-feedback gains K and the integrator part into a single dynamic block with the
reference signal and the two positions ¢, and ps as inputs and the control current I; as
output. The vector Cy is used to select ¢, as the output signal that is compared with the
reference signal for generating the steady-state error for the integral part of the controller.

The function set_aw(sys,poles) that transforms the previous controller (Contr(s) =
N(s)/D(s)) in an input state-space system and a feedback state-space system, imple-
menting the anti-windup mechanism. The vector poles contains the desired poles of the
two new systems (D () (see figure 9.2).

9.2. THE PLANT MODEL

syspr(s) =1 — DZEUS()S)

®_> sys_in %

In1

. Outt
LTI System Saturation

sys_fbk

LTI System1

Figure 9.2: Anti windup

9.2 The plant model

Sampling time
ts = 10e—3

gssl = ss(A,B,C,D)
gss = ss(A,B,C2,D2)
gz = c2d(gss,ts, 'zoh’)

86 CHAPTER 9. EXAMPLE

9.3 Controller design

Control design

wn = 10

xil = np.sqrt(2)/2

xi2 = 0.85

clopl = [1,2xxil*wn,wnx**2]
cl_p2 = [1,2xxi2%wn,wn*x2]
cl_p3 = [1,wn]

cl_polyl = sp.polymul(cl_-pl,cl_p2)

cl_poly = sp.polymul(cl_polyl, cl_p3)

cl_poles = sp.roots(cl_poly) # Desired continuous
poles

cl_polesd = sp.exp(cl_poles*ts) # Desired discrete poles

Add discrete integrator for steady state zero error
Phi_f = np.vstack((gz.A,—gz.Cxts))

Phi_f = np.hstack ((Phi_f,[[0],[0],[0],[0],[1]]))

G_f = np.vstack ((gz.B,zeros ((1,1))))

Pole placement
k = placep (Phi_f ,G_f,cl_polesd)

9.4 Observer design

Observer design — reduced order observer
poli_o = 5xcl_poles [0:2]
poli_oz = sp.exp(poli_ox*ts)

disks = ss(A,B,C,D)
disksz = StateSpace(gz.A,gz.B,C,D, ts)
T = [[0,0,1,0],(0,0,0,1]]

Reduced order observer
r_.obs = red_obs(disksz ,T, poli_oz)

Controller and observer in the same matriz — Compact
form
contr.I = comp-_form_i(disksz ,r_obs ,k,[0,1])

Implement anti windup
[gss_in , gss_out]| = set_aw(contr.I,[0.1,0.1,0.1])

9.5 Simulation

We can perform the simulation of the discrete-time controller with the continuous-time math-
ematic plant model using the block diagram of figure 9.3
This diagram is stored as “disks_sim.dgm” in the folder.
The plant is represented by a continuous-time state-space block with 1 input and 2 outputs.
The controller implements the state-feedback gains and the state observer and it has been split
into a CTRIN block and a CTRFBK block in order to implement the anti-windup mechanism.

9.6. REAL-TIME CONTROLLER 87

G(z) —

SATUR
CTRIN SUM PLANT Plot

Glz)

CTRFEK

Figure 9.3: Block diagram for the simulation

Now we can launch the simulation with the command “Simulate” from the toolbar or from the
menu.
A double click on the ‘block “Plot” show the result of the simulation (see figure 9.4)

9.6 Real-time controller

In order to generate the RT controller for the real plant, we first have to substitute the plant
with the interfaces for sensors and actuators using blocks that send and receive CAN message
using a USB dongle of Peak System. The template makefile for this system is now rt.tmf, that
allows to generate code with real-time behaviour.

The block diagram for the real-time controller is represented in figure 9.5.

The motor position can be plotted in python at the end of the execution (see figure 9.6).

88 CHAPTER 9. EXAMPLE

Figure 9.4: Simulation of the plant

I)

SOUBRE +— ENCL
. « Gizl = " —= i " ook
phn E i 1 i ! r <L
P - = . .
[T i SATUR moT F 1
SOCLET 0551 SUM SOCHOUT

SOCKN Enc2

« Giz} =

Dss2

Figure 9.5: Block diagram for the RT implementation

9.6. REAL-TIME CONTROLLER

Figure 9.6: RT execution

89

90

CHAPTER 9. EXAMPLE

Bibliography

VirtualBox. [Online]. Available: https://www.virtualbox.org
Download Anaconda. [Online|. Available: http://continuum.io/downloads

Obtaining NumPy and SciPy libraries. [Online]. Available:
http://www.scipy.org/scipylib/download.html

Python Control toolbox. [Online]. Available: https://github.com/python-control /python-
control

Slycot. [Online]. Available: https://github.com/jgoppert/Slycot
pycontrol.tgz. [Online]. Available: http://robertobucher.dti.supsi.ch/python/

Slycot Master - 0.1.0. [Online]. Available: http://www.lfd.uci.edu/ gohlke/python-
libs/#slycot

NumPy for Matlab Users. [Online]. Available:
http://wiki.scipy.org/NumPy _for_Matlab_Users

David J. Pine. Introduction to Python for Science. [Online]. Available:
https://github.com/djpine/pyman

Tentative NumPy Tutorial. [Online]. Available:
http://wiki.scipy.org/Tentative_NumPy_Tutorial

SciPy Tutorial. [Online]. Available: http://docs.scipy.org/doc/scipy-
0.14.0/reference/tutorial /index.html

Matplotlib. [Online|. Available: http://matplotlib.org/
SymPy Tutorial. [Online|. Available: http://docs.sympy.org/dev/tutorial/index.html

Kane’s Method in Physics/Mechanics. [Online]. Available:
http://docs.sympy.org/0.7.5/modules/physics/mechanics/kane.html

Kane’s Method and Lagrange’s Method (Docstrings). [Online]. Available:
http://docs.sympy.org/latest /modules/physics /mechanics/api/kane_lagrange.html

P.C. M. . T. R. Kane. Motion Variables Leading to Efficient Equations of Motions. [Online].
Available: http://www2.mae.ufl.edu/ fregly/PDFs/efficient_generalized_speeds.pdf

91

92 BIBLIOGRAPHY

[17] A Brief Synopsis of Kane’s Method. [Online|. Available: www.cs.cmu.edu/ delucr/kane.doc

(18] L. A. Sandinol, M. Bejar2, and A. Ollerol. Tutorial for the applica-
tion of Kane’s Method to model a small-size helicopter. [Online]. Available:
http://grve.us.es/publica/congresosint /documentos /Sandino_ RED-UAS _Sevilla2011.pdf

[19] A. Purushothaml and M. J.Anjeneyulu. Kane’s Method for Robotic Arm Dynamics: a
Novel Approach. [Online]. Available: http://www.iosrjournals.org/iosr-jmce/papers/vol6-
issued /B0640713.pdf

[20] PySimEd. [Online|. Available: http://www.kiwiki.info/index.php/PySimEd

[21] A port of gqnodeseditor to PySide. [Online|. Available: https://github.com/cb109/qtnodes

